
Writing a Test Plan

Establish your hypotheses, methodologies, and expected

results.

Dear KV,

We're getting ready for a project release at work, and since we're a small startup, all the

developers have been asked to test the code of one of the other developers. We did this by

lottery, each of us drawing a name from a hat (we were not allowed to draw our own name). It

was an odd way to select testers, but it seems no worse than the processes I've seen at larger

companies. The problem for me isn't that I have to write tests, but that I also have to write a test

plan, one of the requirements imposed by our CEO, who is also the VP of engineering, aka my

boss. I've never written an actual test plan, just collections of tests. Of course, I test my own

code, but because I wrote the code, I know what I'm testing, and it has always been a

straightforward process. Should I just write the tests and then list them in the plan? Somehow

that doesn't seem to be what my boss is looking for.

A Man Without a Plan

Dear Planless,

Ah, a test plan, which can be an incredibly useful document or a massive time sink and

distraction. Most good test plans start out as one-page documents, because what you must avoid

is setting out to test everything--all at once. Instead of just trying to poke at various things that

you think you need to test, you need to have a plan of attack as to what and how to test your

colleague's code.

A good test plan is a lot like the lab reports some of us had to write for high school science

classes. You won't use the word hypothesis, but each test is basically testing one. The plan

should start with an outline so that you know you're covering the basics and the main thrust of

the code. In place of a hypothesis, you have a statement about what you expect the code to do:

"Given input X, we expect to see output Y."

Of course, it's not enough to have just a hypothesis; you have to say how you're going to prove or

disprove the hypothesis. What is your test method? Do not answer this with, "Run the code,"

because if you do, both your management and KV will be perfectly justified in hanging you out

of the office window by your thumbs. I bet you didn't read your whole employment contract, did

you? Go ask HR, thumb hanging is in there. I'll wait.

Now that you know you have to do more than "run the code," let's look at some more useful

valid test methods. Describing the test inputs you intend to use is a good start. You don't need to

list every possible input, but you should describe the range or shape of what the inputs might be.

For a networked system, you might describe the types of messages you'll use in your test: "We

will send packets of between 64 and 1,500 bytes, with most messages being power-of-two size

bytes and containing random bit patterns in their payload sections." That's the test input, but you

also need to describe the test output. Again, taking a networked system as an example, you might

say, "A correct test result is one where all messages are forwarded without any messages being

dropped, lost, or corrupted."

If your test has special setup requirements, such as a particular configuration of software or

hardware, these must also be included in the plan, probably under their own section marked

"Configuration." At the present time, you're the one writing the plan and the tests and probably

executing them, but in the future, it may not be you running the tests. All the assumptions that

are in your head while writing the test plan must be sought out, cornered, beaten into submission,

and then written down. A test plan that leaves out an important but obvious (to you, anyway)

requirement is going to be a source of maddening frustration for the next person who tries to use

it.

Two more items to note in the test plan are the framework you're using and where it will store its

results. Unlike a lab report, your test plan doesn't need to contain the results of running the test,

and, in fact, I would expect that the results would be stored somewhere by the test framework

that you're using.

If you can think of each of your tests as an experiment with a hypothesis, a test methodology,

and a test result, it should all fall into place rather than falling through the cracks.

George V. Neville-Neil, Communications of the ACM, February, 2019

